
Towards an Infrastructure for MLS Distributed Computing

Myong H. Kang, Judith N. Froscher, and Brian J. Eppinger

Naval Research Laboratory
Information Technology Division

Washington, DC, 20375

Abstract

Distributed computing owes its success to the development of infrastructure, middleware,
and standards (e.g., CORBA) by the computing industry. This community has also
recognized the need to protect information and has started to develop commercial security
infrastructures and standards. The US Government must protect national security
information against unauthorized information flow. To support MLS distributed
computing, a MLS infrastructure must be built that enables information sharing among
users at different classification levels. This infrastructure should provide MLS services
for protection of classified information and use both the emerging distributed computing
and commercial security infrastructures. The resulting infrastructure will enable users to
integrate commercial information technology products into their systems.

In this paper, we examine the philosophy that has led to successful distributed computing
among heterogeneous, autonomous components and propose an analogous approach for
MLS distributed computing. We identify some services that are required to support MLS
distributed computing, argue that these services are needed regardless of the MLS
architecture used, present an approach for designing these services, and provide design
guidance for a critical building block of the MLS infrastructure.

1. Introduction

The goals of distributed computing have not been achieved without pain. The 80’s and
early 90’s witnessed not only the reengineering of corporate business processes to
compete in global markets, but also the migration of those corporations’ legacy
information technology (IT) assets to widely distributed, interoperable components. This
journey has been difficult and many wrong turns were taken. The development of a
distributed computing infrastructure, middleware, and standards by industry have resulted
in the promise of true interoperability among globally distributed users. These standards
have also made it possible for many different vendors to build IT products that are
interoperable. IT users, developers, and businesses, generally, have benefited from
interoperable products. The US Government policy is to reap these benefits and enjoy
similar productivity increases by harvesting COTS products.

In particular, the use of COTS products promises the warfighter global access to open
resources. However, the use of COTS products introduces additional risk to national
security because COTS products do not address the secure handling of classified
information. To provide secure access to both open and classified resources, the DOD
must provide multilevel secure (MLS) services to ensure that only properly cleared users
access classified national security information. The confidentiality, integrity, and
availability of national security resources must be protected both from hacker attacks and
from attacks mounted by national intelligence organizations. In a distributed system, lots
of data, even code, moves from system to system. How to restrict access to the data and
system resources is an important problem. Commercial security services (e.g., CORBA
security services [6] and Java security [3]) attempt to address secure information sharing
in a single-level distributed system. These security services are designed to work in a
heterogeneous environment while preserving other properties such as autonomy and
location independence. The DOD should make appropriate use of these services to protect
single-level information.

A multilevel secure (MLS) service allows users with different clearances to access all and
only the data their clearances authorize them to see. MLS distributed systems must satisfy
functional, distribution, and single-level security requirements as well as
• enforce strict separation among classification domains and
• control the flow of information across classification boundaries.

MLS-specific requirements for distributed system design hinge on prevention of
unauthorized information flow and require convincing evidence, i.e., assurance, that no
high information is released to unauthorized systems and users. High-assurance MLS
systems are extremely difficult and expensive to build because the software must satisfy
rigorous development standards, must undergo an extensive evaluation and certification
process by an independent party, and must be protected against the insertion of malicious
code throughout the entire lifecycle. As a result, almost no MLS systems are in
operational use today. MLS systems are just not tractable in the current fast-paced
development of new technology. Just as distributed computing only became feasible after
industry developed infrastructures, middleware, and standards to support it; MLS
distributed computing needs an infrastructure, middleware, and standards to make it
tractable for operational use. The MLS infrastructure must co-exist with industry standard
infrastructures for distributed computing and security, and must provide standard MLS
services to support MLS computing.

The role of multilevel security engineers includes devising approaches that can make
MLS distributed computing tractable. One way to achieve this goal is
• to develop a distributed system design approach that separates MLS protection from

the design of other required functionality,
• to build a MLS distributed computing infrastructure

− to hide the complexity of the required MLS mechanisms from system designers as
much as possible,

− to separate application specific security requirements from MLS enforcement
mechanisms (i.e., MLS infrastructure provides MLS enforcement mechanisms),

− to allow system designers to use commonly accepted distributed computing
services and applications (i.e., The purpose of MLS infrastructure is to extend
single-level security services, distributed computing infrastructures and
applications across classification domains), and

− to standardize the approval process for using MLS distributed computing systems,
• to offer cost effective, reusable, and easy to maintain security devices.

In this paper, we propose an infrastructure for MLS distributed computing, and identify
some necessary services and critical MLS building blocks for the proposed MLS
infrastructure. When we examine the MLS problem, we must be concerned with
assurance, which in turn demands clean and simple engineering solutions. Therefore,
throughout this paper, we apply software-engineering principles, such as separation of
concerns (e.g., trust and functionality) to design a MLS infrastructure and critical MLS
building blocks.

1. MLS Distributed Computing

Today’s system designers and users have higher expectations than ever for usability and
functionality of computer systems. Distributed object computing standards, like CORBA
and DCOM, have made a basic level of interoperability possible. For example, in today’s
distributed object-oriented computing environment, lots of client and server objects reside
in many different hosts (i.e., heterogeneity). Designers and users of globally distributed
objects cannot be expected to know whether server objects are located in the same
machine or at a remote host (i.e., location independence). Users and organizations want
to manage their own data and computing resources (i.e., autonomy), but at the same time
they expect sharing of information among different organizations across many systems
(i.e., information sharing). Keeping servers active all the time hogs system resources and
can be exploited to deny service to legitimate users. On the other hand, users expect a
client object to be able to send a request to a server at any time and receive the reply right
away (i.e., performance and usage of system resources). To satisfy these high
expectation, standards and infrastructures for distributed computing have been built (e.g.,
CORBA).

What makes MLS protection different from single level security? MLS mechanisms
ensure that principals can access all and only the information they are authorized to see.
No protection mechanism is perfect. Flaws can be introduced in the lifecycle from the
concept stage through implementation and maintenance. Any flaw in a protection
mechanism can become a means for illegally leaking information or for inserting false
information or malicious code. MLS protection identifies and restricts insecure
information flow, for example the flow of more sensitive information to less sensitive
users. An assurance argument must be developed to demonstrate that the mechanism is
effective, is correctly implemented, and lastly has been so thoroughly evaluated and

analyzed that there is high confidence that we have found all the exploitable
vulnerabilities. The development of this assurance evidence and independent evaluation
have made MLS products very costly, outmoded, difficult to use and, therefore, not really
tractable.

Before we define the services that a MLS distributed computing infrastructure should
provide, let us examine some lessons learned from a few successful single-level security-
related technologies. Two security technologies have become commonplace in today’s
distributed computing environment. The first is cryptography, which can provide sender-
to-receiver authentication, non-repudiation, and ensure the integrity and privacy of data in
transit through a network. The second example is firewall-related technology that can
isolate a community of interest from unwanted outsiders. The two main reasons for the
success of these security technologies are
1. they satisfy the needs of users reasonably well,
2. their use is independent of system functionality, and therefore, almost transparent to

system designers and end users (e.g., a system designer does not have to worry about
whether the software will be used inside the firewall or not).

Distributed computing infrastructures have made it much easier for developers of
distributed systems to practice the software engineering design discipline: separation of
concerns. They must understand and correctly use the infrastructure and its services.
When designing a system, the infrastructure allows distributed computing concerns to be
addressed separately from functional issues, and makes the development of distributed
systems tractable. Similarly, single-level security services must be easy to use and their
use must be independent of the desired application functionality.

There are many requirements that MLS system designers have to consider. Some of them
are depicted in figure 1. Functional and distribution requirements are not much different
from those for single-level distributed systems. Example requirements include supporting
heterogeneity, autonomy, location independence, and transparency of the distributed
application development process (i.e., developing applications for a distributed system
should not be too different from developing applications for a standalone system).
Additionally, MLS distributed systems can use some single-level security mechanisms
(e.g., authentication, privacy, integrity).

The MLS infrastructure should provide the services and MLS functionality to allow MLS
system designers to practice an engineering discipline that is similar to that used for
distributed single-level systems. The MLS infrastructure must enable the system
functionality to be separate from MLS enforcement and distributed computing concerns.
To be successful, MLS enforcement must also be tractable. We believe that being able to
reason about security independently makes tractability more attainable.

MLS
Distributed

System
Design

Distribution requirements
(e.g., heterogeneity, autonomy)

Fu
nc

tio
na

l r
eq

ui
re

m
en

ts
(p

ro
vi

de
 c

on
te

xt
 f

or
 s

ec
ur

ity
)

Tractability requirements
(e.g., time, money)

M
L

S
 requirem

ents
(e.g., confidentiality, integrity)

Figure 1: Requirements for MLS distributed system design

In the following subsections, we examine a few high-level requirements for a MLS
distributed infrastructure. We also show that these requirements are not specific to a
particular MLS architecture.

2.1. A Few Services for a MLS Distributed Computing Infrastructure

MLS distributed computing is still in its infancy. For widespread use of MLS distributed
computing, the MLS infrastructure should provide equivalent services and programming
paradigms to the single-level distributed computing infrastructure. Learning from the past
20 years of MLS computing history, it is not practical to expect that MLS distributed
computing will depend only on a MLS distributed computing infrastructure, which is
built from scratch. What we need is a MLS infrastructure that
• seamlessly works with the single-level distributed computing infrastructure,
• operates in a heterogeneous environment while preserving other properties such as

autonomy and location independence, and
• provides similar services to those available in a single-level distributed computing

infrastructure across classification boundaries.

From these requirements, we derive a few important principles and identify MLS services
that the MLS distributed infrastructure should provide. When we derive and design MLS
services for the MLS infrastructure, we want to make sure that the MLS system designers
can apply widely used design principles and paradigms. Only then will security become
an “enabling technology” rather than an “encumbering technology.” In this context, we
set out the goals in designing the MLS distributed infrastructure.
• The infrastructure should facilitate and encourage system engineers to concentrate on

system functionality. This is possible only when the MLS infrastructure faithfully
carries out its “behind-the-scenes” support. This is extremely important because

system functionality gives the context in which the security solution has to live and be
used.

• The infrastructure should support a sound architecture and consist of well-defined
functional units so that the MLS system designer makes the correct choice and can
easily show that the MLS distributed architecture is secure. This principle provides a
basis for using the appropriate assurance techniques to build different trusted
components.

• The infrastructure should support a flexible architecture so that users and designers
can place the right functions at the right place. It is important because today’s user
wants to manage his own computing resources and is responsible for maintaining his
own resources (i.e., autonomy).

• The infrastructure should be as transparent as possible in terms of usability,
performance, and the consumption of system resources.

Based on the above design goals and recent developments in single-level distributed
systems, some necessary services that cross the classification boundaries are identified.
1. MLS server activation. There may be many servers that expect requests from clients at

different classification domains. Requiring these servers to be active all the time
places an extra burden on the systems. Hence, a MLS activation service that can
activate the server when requests from other classification domains arrive is needed.

2. MLS request/reply coordination. When a client and a server are located in different
classification domains, the client’s request and server’s reply may not go through the
same channel. For example, a client’s request from a high domain to a lower domain
may go through a downgrader, but the server’s reply from the lower domain to the
high-level client cannot go through a downgrader. However, at the same time, we do
not want client software to behave differently when the servers are located in the same
classification domain. Hence, there may be a need for a coordinator that can associate
the corresponding reply to client’s request and direct the reply to the correct client.

3. MLS cryptography. A MLS cryptographic infrastructure that can provide
authentication and non-repudiation of the senders, and the integrity and privacy of
network messages from a sender at one classification domain to a receiver at different
classification domain is needed. This infrastructure should provide secure extensions
of single-level cryptography across classification boundaries.

2.2. MLS Distributed System Model

In this section, we will show that the MLS services that are described in section 2.1 are
not specific to a particular MLS architecture. Rather, they are needed in all MLS
distributed systems although the implementation details may vary depending on the MLS
distributed architecture. There are three major approaches for building MLS distributed
systems. They are multiple single-level systems, distributed MLS-systems, and a hybrid
of the two approaches.

2.2.1. Multiple Single Level (MSL) Approach

In this approach, MLS distributed systems are composed of single-level systems and
classification boundary controllers that control information flow among systems at
different classification levels [2, 4]. In this approach, classification boundary controllers
comprise small, high assurance MLS trusted devices with single level policy servers for
release and receipt of data. Most other components are mostly untrusted COTS products
and a few trusted single-level products. Some single-level products may be trusted to do
other tasks like single-level separation and cryptographic certificate and key management.
These components are part of the single-level security infrastructure. In this approach, the
separation among different classification levels does not have to be physical separation.
Data with different classifications can be logically separated through cryptographic
means. Figure 2 shows a MSL approach where some systems can communicate with
classification boundary controllers directly while others cannot. Whether systems are
allowed to communicate with boundary controllers is governed by the release and receipt
policies of each community of interest.

AH

BH

CH

AL

BL CL

: unidirectional classification boundary controller
: unidirectional classification boundary controller

High classification level

Low classification level

Figure 2: MSL approach to construct MLS distributed systems

Consider a scenario where a client object that resides in host AH accesses a server object
in host BL through a classification boundary controller. In this simple call, sender-to-
receiver authentication, authorization, the integrity and privacy of message in the network
are needed. Those properties have to be maintained across classification boundary
controllers. Hence, MLS cryptographic services are needed. The server at the low
classification level may not be active when the request arrives; hence, server activation
services across a classification boundary are needed. If the reply from the server has to go
back to the client through an upward information flow controller, then MLS request/reply
coordination services are needed to send the right reply to the client that made the request.

2.2.2. Distributed MLS-systems Approach

This approach constructs MLS distributed systems by composing MLS standalone
systems. The high portion of a MLS system communicates to the corresponding high
portions of other MLS systems. The low portion of a MLS system communicates to the
low portion of other MLS systems. The MLS operating system maintains separation
among data with different classifications. There is no separate boundary control device in
this approach. Nevertheless, each MLS system has a built-in read-down mechanism that
allows high-level processes to access lower-level information in the same MLS system. If
there is a need to release information (a request is a form of information), the information
has to go through a classification boundary controller that is trusted and controls the flow
of illegal information in the MLS system.

A

B

C

: An MLS system

Figure 3: Distributed MLS standalone systems approach

Let us consider the same scenario that we introduced in section 2.2.1 (i.e., a high client
object that resides in the high portion of host A accessing a low server object that resides
in low portion of host B). It is easy to see that we need the same three services in this
MLS distributed system. Note that even though the read-down mechanism allows high
clients to read information in a lower-level file or database, it cannot activate lower-level
objects to perform a task. In this case, system A or System B can become a classification
boundary controller by extending the MLS operating system with trusted code that allows
the information flow across classification levels to bypass security policy enforcement.

2.2.3. Hybrid Approach

In this approach, MLS distributed systems are composed of single-level systems and MLS
systems that act as classification boundary controllers, MLS servers, or MLS clients. It is
easy to see that this approach is very similar to the MSL approach except that the
unidirectional classification boundary controllers may be collapsed into a single MLS
system. In this approach, a system designer may choose to deploy separate boundary
controllers due to assurance, maintainability, availability, performance, or cost reasons.

AH

BH

CH

AL

BL

CL

: An MLS system acting as a boundary controller

Figure 4: A hybrid approach to construct MLS distributed systems

Let us consider the same scenario that we introduced in section 2.2.1 (i.e., a client object
that resides in host AH accessing a server object in host BL). Again, it is trivial to see that
we need the same three services in this MLS distributed system.

2.2.4. Recap

By examining a simple scenario in the three general approaches to constructing MLS
distributed systems, it is easy to arrive at the conclusion: MLS distributed systems require
the same set of services across classification boundaries. In fact, these services are
simply MLS extensions of services needed for single-level distributed computing. So far,
the MLS infrastructure should provide classification boundary controllers and support for
extending single-level distributed computing and security services across classification
boundaries.

Note that some boundary controllers are better suited to the client-server distributed
computing paradigm than others. For example, consider the NRL Pump [5] and the read-
down capability provided by MLS systems. From a principal’s perspective, both can be
considered an upward flow controller. The NRL Pump is designed to work in distributed
environments in the sense that it supports multiple connections and it “listens” for
messages to arrive. However, the read-down mechanism in a MLS system is designed for
a stand-alone system where a high-level process “reads down” to access lower level
information. If we use the read-down mechanism in a client-server distributed computing
paradigm, a high-level process has to poll low-level processes to determine whether
messages have arrived at the lower level.

3. Proposed Infrastructure for MLS Distributed Computing

In this section, we propose an infrastructure for MLS distributed computing. We then
analyze classification boundary controllers that are the cornerstones of the MLS

infrastructure. In that process, we identify a generic flow controller and present a potential
logical design of the flow controller.

Throughout this section, we consistently apply the same guiding principle, separation of
concerns (e.g., trust and functionality). We strongly believe that applying this principle to
design MLS infrastructure is very important because separation of concerns enables the
system designer to produce tractable solutions.

3.1. MLS Service Solutions

In this subsection, we closely look at each of the services for a MLS distributed
infrastructure, as defined in section 2.1, and propose solutions. We believe the solutions
should meet the following requirements.
• Proposed solutions should be independent of the MLS architecture.
• Proposed solutions should work with security unaware software, COTS or no COTS.
• Proposed solutions should have efficient system resource utilization, pay as little

performance penalty as possible, and be easy to manage.

In this subsection, we use the MSL approach as our target architecture. However, it is not
difficult to modify the proposed solutions to work with other architectures.

3.1.1. MLS Server Activation Service

In today’s distributed computing environment, a lot of server objects are required in order
to provide the appropriate system functionality and flexibility. It is not practical for the all
these resource servers to always be active and thereby wasting system resources. What we
need is a server activation scheme across classification boundaries, which will augment
the current single-level services. Figure 5 shows our proposed solution.

Our proposed solution involves the use of MLS activation daemons, which are designed
to listen to boundary controllers for service requests. Servers (i.e., proxy servers in our
case) that need to be started must first be registered with the MLS activation daemon.
After a server has been registered, a (proxy) client can use that server by passing the
desired server name to the MLS activation daemon. When the MLS activation daemon
receives a request, the daemon will activate the target server and redirect the message
traffic to that server.

The approach that we have described thus far is similar to single-level activation services
such as Orbix’s Orbixd daemon or Java’s remote object activation daemon. Single-level
clients and servers can talk to each other either through Internet Inter-ORB Protocol
(IIOP) or Java’s Remote Method Invocation (RMI) protocol. The difference in the MLS
case is that those protocols have to pass through a classification boundary controller. One
potential solution is to make the classification boundary controllers aware of the IIOP and
RMI protocols. The drawbacks of this approach are:

• Whenever a new protocol appears, the classification boundary controllers have to be
expanded and may need to be re-evaluated, re-certified, or re-accredited.

• Boundary controllers, in general, do not provide a good programming environment.
• Some protocols may require feedback from the server that can not be accommodated

through a boundary controller.

Boundary
controllers

Low client

Low server

High server

High client

: MLS Activation daemon

activate

: Proxy servers and clients

activate

Figure 5: MLS server activation service

There is another way to provide the same capability. Rather than having boundary
controllers be aware of all the protocols that potentially pass through them, we make
boundary controllers communicate to other software through their own protocol. The
translation of application specific protocols to a boundary controller protocol is handled
by proxies, which we sometimes call wrappers that wrap boundary controllers from
applications. For example, when a high CORBA client requests some service from a low
CORBA server, the high client activates the high proxy through a single-level activation
service such as CORBA activation daemon. The high proxy translates the IIOP request to
the information release boundary controller protocol. The information release boundary
controller then activates the low proxy through the MLS activation daemon to deliver the
request. The low proxy translates the request that is in the form of the information release
boundary controller’s protocol into an IIOP request. It then can activate the real server
through Orbixd. We will see how a reply from the server, if needed, can be returned to the
client in the next section. Note that we could potentially have one proxy per application
protocol.

3.1.2. MLS Request/Reply Coordination Service

Usually in single-level distributed systems, the request and reply paths are through the
same logical connection (e.g., a connection-oriented protocol). However, requests from
clients and replies from servers may not pass through the same logical connection in MLS
distributed systems. To provide an illusion to the client and server objects that they have a
bi-directional connection, MLS coordination services are needed. The object or process

that provides such a service is called a “coordinator” in this paper. The main
responsibilities of the coordinator include:
• Act as a fake server/client so that the real client/server can establish a connection

through a coordinator within the same classification domain to send requests and
receive replies.

• Make use of proper classification boundary controllers.
• Coordinate replies for the proper requests.

Boundary
Controllers

Low-level High-level

Low Server High Client

Coordinator Coordinator

Figure 6: MLS coordination service

Figure 6 provides an architecture for MLS coordination services. If a high client wanted a
connection-oriented communication channel with a low side server, then the coordinators
would be required to act as proxies to provide that connection. The coordinators would
also be required to route traffic from various clients and servers to the correct
destinations.

3.1.3. MLS Cryptography

In today’s distributed systems, users are interested in the full range of cryptographic
services. These services include privacy, authentication, integrity, and non-repudiation.
MLS distributed systems, where senders and receivers may reside in different
classification domains, require the same security properties. A MLS infrastructure
requires a comprehensive solution to provide the equivalent security service across the
classification boundaries due to:
1. each classification domain probably has a different sets of principals and
2. each classification domain may use different cryptographic infrastructures (e.g., one

classification level uses a Kerberos-based cryptographic infrastructure and another
classification level uses SSL-based cryptographic infrastructure).

The above two factors are not unique to MLS distributed computing. However, solutions
to those problems are more difficult than for single-level distributed computing due to
MLS information flow restrictions.

When a MLS cryptographic infrastructure is designed, it should
À accommodate a variety of applications and cryptographic infrastructures in different

classification domains,

À minimize encryption and other overhead, and

À accommodate multiple cryptographic mechanisms and Internet standards.

Figure 7 illustrates our proposed solution. This approach involves low-side and high-side
cryptographic proxies. A low-side proxy that acts on behalf of a high-side sender or
receiver understands the low-side cryptographic infrastructure. On the other hand, a high-
side proxy that acts on behalf of a low-side sender or receiver understands the high-side
cryptographic infrastructure.

Boundary
Controllers

Low-level High-level

Crypto.
Proxies

Crypto.
Proxies

Sender/receiver
Sender/receiver

Low Crypto. Infrastructure
(e.g., Key distribution center,

Certification authority) High Crypto. Infrastructure
… …

Figure 7: MLS Cryptographic services across classification domains

Consider a scenario where a low sender transmits messages to a high receiver. The high
receiver needs to know if the messages come from a legitimate low source. Let’s also
assume that boundary controllers can use their own cryptographic algorithms that may be
different from the low-side and high-side cryptographic algorithms. Let’s also assume
that the low-side proxy knows the set of low senders who can send messages to known
high receivers. When a low sender sends a message with his own signature, that message
is delivered to a low proxy. The low proxy validates the sender, through a low-level
cryptographic infrastructure, that the message actually originated from the legitimate
sender and is destined to a legitimate high receiver. The low proxy then relays the
message to a high proxy through a boundary controller. If the high classification domain
knows the low sender, the high proxy may relay the message with the low sender’s
signature. If the high classification domain does not know the low sender, the high proxy
may relay the message with its own signature. Hence, in this case, the authentication of a
low message to the high receiver is based on the trust between a low sender and a low
proxy, the trust between a low proxy and a high proxy, and the trust between a high proxy
and a high receiver.

As illustrated in the above scenario, cryptographic proxies can behave as if they were the
endpoints (sender/receiver). The proxies perform two major roles:
• translation of the cryptographic protocol of one classification domain to the

cryptographic protocol of another classification domain, and

• translation or replacement of principals so that the principal is known to the proper
classification domain.

If the original message is encrypted then the problem becomes more complex. We can
consider two possibilities:
♦ The cryptographic infrastructure of the sender’s domain is replicated to the receiver’s

domain. In this case, encrypted messages can be passed all the way to a receiver. The
receiver can decrypt the message using the replicated infrastructure.

♦ If the receiver’s domain knows nothing about the cryptographic infrastructure of the
sender’s domain, then the cryptographic proxies at the sender side may have to
decrypt the message. When the message reaches a receiver-side proxy, it may re-
encrypt the message using the cryptographic infrastructure of the receiver’s domain.
Note that the message from a sender-side proxy to a receiver-side proxy may be
encrypted depending upon the boundary controller and it’s configuration.

3.1.4. Putting It All Together

In this subsection, we have introduced many servers, coordinators, and proxies. One may
wonder how we can manage all these proxies. However, it is not difficult to see that some
proxies can be combined to carry out multiple functions. Consider a scenario where a
high client sends a request to a low server and expects a reply. In this case, one may want
to combine a high proxy server with a high request/reply coordinator and a high
cryptographic proxy as one server that deals with the boundary controllers. If each proxy
that participates in the merger requires cryptographic authentication in the system design,
then the duplicate function can be streamlined. It is up to the security system designer to
mix and match many different techniques and functions for their needs. The system
designers have to consider all requirements (e.g., functional, distribution, MLS,
tractability) and come up with a reasonable solution that is clean and simple.

3.2. Anatomy of Classification Boundary Controllers

We have introduced the need for three MLS services for the MLS infrastructure in section
2.1. In section 3.1, we proposed solutions for the MLS infrastructure using the MSL
distributed system architecture (section 2.2.1). In this section, we analyze the core
functions of classification boundary controllers (CBCs) that are the key components of
the proposed MLS infrastructure. Different MLS distributed architectures may have
different ways to implement CBCs. However, the core functions of CBCs do not change.
It is important to analyze the core functions of CBCs because it provides the basis for
satisfying the MLS design goals that we described in section 1.

CBCs are, in general, high-assurance devices that have to follow rigorous development
processes and go through extensive and long evaluation, certification, and accreditation
processes. Hence, it is not practical to build each CBC for each specific application.
Instead what we want is a high-assurance multipurpose device that can be reused for
many CBCs, no matter what the application or the data.

To find if it is possible to build a high-assurance multipurpose device, A few basic design
questions need to be answered.
• What basic functions does a CBC perform?
• Where does each function belong? Is the function specific to each organization or is it

common to all organizations that have needs to release or receive information.
• How can we organize CBCs so that they are flexible enough to add and change

functionality without affecting their trustworthiness? In other words, CBCs may
consist of many building blocks that perform different functions. Do all building
blocks have to be trusted in the same way? Is there any room for balanced assurance
where the different building blocks can be trusted in a different way and to different
degrees?

There are roughly three functional units through which information may have to pass
when it goes across classification boundaries. They are a release-policy server, flow
controller, and receive-policy server. An information releaser (sender) may have a
specific policy to release information. An information receiver may have another policy
to receive information. The policies may differ based on the relationship between
different information senders and receivers. The flow controller makes sure that
information flows only in the intended direction. Let us concentrate on each functional
unit one section at a time and analyze information flow across a classification boundary in
terms of functionality and policy that has to be supported.

3.2.1. Information Release

Information may pass through several functional processes before it is actually released.
One process may enforce the organizational and/or application-specific release policies.
A release-policy server determines if the information to be released complies with the
application and organizational release policies. If there is a need to sanitize information,
that process has to be performed before the information reaches a release-policy server.
The flow controller enforces information flow direction (i.e., no bad message or code
flows from the other side). The flow controller also makes sure that all messages it
receives have been authorized by the release-policy server (i.e., all information that needs
be released has to go though a valid information release-policy checker). Figure 8 shows
the three functions.

Flow

controller Enforces
flow direction

Enforces organization
or application specific
release policy

Enforces

Non-bypassability

release
policy
server

sanitize
informationInformation

custodian
(organization)

makes
decision

One
classification
level

Another
classification
level

optional process
(remove source,

fuzz image)

Figure 8: Anatomy of information release

In some special situations, the releaser may consider the domain to which the information
is destined to be more highly protected than his domain. For a domain to be more highly
protected requires that it is only accessible by more trustworthy personnel and computing
resources than the releaser’s domain. In this situation, the releaser’s information may not
need to be sanitized and the release-policy server may only have to provide an
acknowledgement to the flow controller for the information’s release.

Note that the answer to “which classification domain is higher (better protected) than the
other?” could be very subjective. If domain A considers domain B to be accessible by
suspicious personnel or computing resources, then domain A may consider itself as a
higher domain than domain B. However, domain B may believe that the opposite is true
(i.e., mutual suspicion).

3.2.2. Information Receive

Information receive policy depends on the trust relationship between the information
sender and receiver. The receive-policy server may enforce integrity, labeling and other
policies that the domain that receives information wants to enforce. For example, if the
receiving organizations have specific policies such as checking for viruses or adding
labels to information received from another domain, then they can implement those
policies in their receive-policy servers. The flow controller makes sure only authorized
information flows to the receiver’s classification domain and that neither information nor
bad software flows from the receiver’s classification domain to the sender’s classification
domain. Figure 9 shows this concept.

Enforcing
flow direction

Flow
controller

One
classification
level

Another
classification
level

receive
policy
server

Enforcing
authentication,

integrity, labeling,
…, policy

Enforcing

Non-bypassability

Information
receiver
makes

decision

Figure 9: Anatomy of information receive

Note that if the receivers of information consider their domain a more highly classified
domain than the senders’ domain, then they may want to deploy a flow controller that can
prevent covert information leakage such as the NRL Pump [5]. We would like to
emphasize again that the strength and mechanism of policy servers and flow controllers
depends on the trust relationship between releasers and receivers.

3.2.3. Implementation Issues

There are many ways to realize the functions and components in figure 8 and 9. One
obvious way to implement these components is to host everything on a trusted machine or
device. One advantage of this approach may be its footprint. However, we think this
approach violates the MLS design principles proposed earlier in this paper. This approach
may force every organization that has a need to release or receive information to maintain
its own trusted machines that are usually very expensive in terms of hardware, software,
and maintenance. Otherwise, this approach may create an organization whose sole
purpose is to manage classification boundary controllers, which are unwanted MLS
devices. This approach violates the autonomy principle and creates bureaucracy. It also
forces the same level of assurance in the policy servers and the flow controller.

We propose another way to organize components in figure 8 and 9. Since each
organization may have different release and receive policies, release-policy and receive-
policy servers have to be updated and maintained by each organization that needs to
release and receive information. The flow controller protects information in a
classification domain rather than a specific organization. In addition, the policy that the
flow controller enforces is a simple, invariant policy. Hence, the flow controller can be
shared by many organizations in the same classification domain and does not require a
bureaucracy for support. To enforce the non-bypassability property among the flow
controller and policy servers, a cryptographic algorithm could be used to provide
authentication and non-repudiation services. Figure 10 shows an example configuration
where release-policy and receive-policy servers are managed by each organization while
the flow controller is shared by many organizations.

Fl
ow

co
nt

ro
lle

r

one
classification

domain

another
classification
domain

release
policy

server 1

Org 1

release
policy

server 2

Org 2
receive
policy

server 2

Org 1

receive
policy

server 1

Org 3

Figure 10: A configuration of information release and receive

The flow controller has to be either a trusted device or trusted software on a MLS
platform because it is located at a classification boundary. The release-policy and receive-
policy servers should be trusted software, where trusted means that the software will do
what it is supposed to do. The question is “do we have to run a policy server on a MLS
platform?” If an organization does not have to run the policy server on a MLS platform, it
may save hardware and maintenance costs. We believe the policy server can be run on a
single-level platform with modest trust such as C2 in the TCSEC [1] sense. The reasons
are as follows:
• Since policy servers are not actually located at classification boundaries, MLS

platforms do not add any additional value over single-level platforms.
• If a bad process tries to smuggle information without approval from a policy server, it

must prove that the information passes the test of a policy server to a flow controller.
To do this the bad process must circumvent the non-bypassability channel between a
policy server and the flow controller, since a flow controller will only release
information from that channel.

Therefore, what needs to be protected is access to the flow controller’s communication
channel. In the example above, we proposed that cryptographic algorithms be used to
establish this channel. In this case, what needs protection is the cryptographic key for the
user who operates the policy server. Since protecting a key on a computer is not a
multilevel problem, we believe a well-engineered single-level system should do the work
as effectively as a MLS system.

From the description of information release and receive, it is clear that we need a high-
assurance building block, a flow controller, that is flexible enough to incorporate various
mechanisms for providing a trusted communications channel without affecting the
assurance argument of the device.

3.3. A Logical Design of Flow Control Devices

In section 3.2, we analyzed the classification boundary controllers that are the core
components in the proposed MLS infrastructure. The main principle behind the analysis
was the separation of functions and trust for tractability reasons. In that process, we
identify the need for a multipurpose high-assurance flow controller that is independent of
a specific application to avoid repeated evaluation and certification.

In this section, we investigate the requirements of such devices for the MSL and hybrid
architectures as described in section 2.2. We can summarize the requirements of high-
assurance flow controllers as follows.
• A flow controller should levy as little overhead as possible in terms of performance.
• They need to be network devices that can support many different network protocols

(e.g., TCP/IP on Ethernet, Token ring, ATM) and simultaneous connections.
• They may need to incorporate cryptographic-based algorithms to support

authentication and non-repudiation of policy servers, and the integrity and privacy of
messages.

• They should have their own flexible protocol, which may be independent of network
or application-level protocols, to avoid frequent changes of the device but, at the same
time, support various network protocols.

• A flow controller should be structured so that it does not require new evaluation and
certification every time a new network protocol, a new cryptographic algorithm, or
even the direction that they are used is changed (i.e., upward or downward).

Figure 11 shows a configuration of the flow controller that can meet the above
requirements. One of the most important guiding principles for the following
configuration is “separation of function and trust” (which is the same principle that was
applied to the analysis of boundary controllers), so the different components can be
trusted in a different way and to different degrees. The MLS component should be small
and generic to avoid repeated evaluation and the single-level components should be
versatile, so they can adapt to many different environments.

Single-level component that
supports a specific network protocol
and/or cryptographic algorithms for
one classification domain

MLS component that
controls information flow

Internal
communication

channel
Single-level component that
supports a specific network protocol
and/or cryptographic algorithms for
another classification domain

Figure 11: A multipurpose flow controller

In figure 11, the MLS middle component enforces the direction of information flow
between classification domains. Two other components that are located on either side of
the trusted component are single-level components that communicate to the trusted
component through internal communication channels. The main functions of those two
components are supporting low-level network protocols and possibly some cryptographic
algorithms for the authentication of policy servers and the integrity and privacy of
messages. Note that the single-level components in figure 11 can be modified without
affecting the trustworthiness of the device (from the MLS point of view). Also note that
there are trusted paths between the MLS component and the single-level components in
the device.

4. Conclusion

For widespread use of MLS distributed computing, a MLS infrastructure that provides
equivalent services and programming paradigm to the single-level distributed computing
infrastructure is needed. In this paper, we examined several services for the MLS
distributed infrastructure. They were MLS server activation, MLS coordination, and MLS
cryptographic services. We then examined classification boundary controllers that are
core pieces of the MLS infrastructure. Traditional classification boundary controllers
contain many functions. In this paper, we propose to distribute organization-specific
functions to policy servers where the organization can update and maintain them. This
approach
1. promotes autonomy and reuse,
2. is more flexible and tractable than the traditional classification boundary controller

approach, and
3. saves time and money by not forcing the same level of assurance for all components.

Finally, we examined the logical structure for a multipurpose flow controller, which may
be a building block of classification boundary controllers. One of the most important
aspects of such devices is separation of trust and functions. The MLS component should
be as small and generic as possible to avoid repeated evaluations and the single-level
components should be able to adapt to as many environments as possible.

The main reasons for the failure of MLS computing (based on the number of MLS
systems that are developed and deployed) include:
♦ Failure to separate trust from functionality. This causes the complaint that “secure

systems are expensive to build, certify, and to maintain”.
♦ Failure to recognize the importance of usability and to keep pace with current

technology and computing paradigm. This causes the complaint that “secure systems
are hard to use and unfit for performing critical tasks”.

♦ Failure to provide MLS infrastructure. This leads to the complaint that “secure
systems are hard to build” and “security takes all the allotted time and effort that
should be used for system functionality”.

We believe this paper is a step in the right direction for MLS computing in terms of trust,
functionality, tractability, and usability.

References

1. Department of Defense, “Trusted computer system evaluation criteria,” DoD5200.28-STD,
1985.

2. Defense Advanced Research Projects Agency, Information Systems Office, “Security
Architecture for the AITS Reference Architecture,” Draft document, 1998.

3. Gong, L. “Java Security Architecture (JDK1.2),” Draft document, 1998.
4. Kang, M. H., Froscher, J. N., and Moskowitz, I. S. “An Architecture for Multilevel Secure

Interoperability,” Proceedings of 13th Computer Security Applications Conference, San
Diego, CA, 1997.

5. Kang, M. H., Moskowitz, I. S. and Lee, D. C. “A network Pump,” IEEE Transactions on
Software Engineering, vol. 22, no. 5, pp. 329 - 338, 1996.

6. Object Management Group “CORBA Security,” OMG document 97-02-20, 97-02-21, 1997.

